Theory of Statistics
This document originated from lecture notes of mathematical statistics course taught at George Mason University. Students should be able to work through the details of "hard" proofs and derivations.
Tag(s): Statistics
Publication date: 12 Nov 2013
ISBN-10: n/a
ISBN-13: n/a
Paperback: 917 pages
Views: 44,557
Theory of Statistics
James E. Gentle wrote:This document is directed toward students for whom the theory of statistics is or will become an important part of their lives. Obviously, such students should be able to work through the details of "hard" proofs and derivations; that is, students should master the fundamentals of mathematical statistics. In addition, students at this level should acquire, or begin acquiring, a deep appreciation for the field, including its historical development and its relation to other areas of mathematics and science generally; that is, students should master the fundamentals of the broader theory of statistics. Some of the chapter endnotes are intended to help students gain such an appreciation by leading them to background sources and also by making more subjective statements than might be made in the main body.
About The Author(s)
James E. Gentle is Professor of Computational Statistics at George Mason University. He is a Fellow of the American Statistical Association (ASA) and of the American Association for the Advancement of Science. He has held several national offices in the ASA and has served as associate editor of journals of the ASA as well as for other journals in statistics and computing. His interests include statistical computing, computational statistics, simulation, robust statistics, survey sampling, and computational finance.
James E. Gentle is Professor of Computational Statistics at George Mason University. He is a Fellow of the American Statistical Association (ASA) and of the American Association for the Advancement of Science. He has held several national offices in the ASA and has served as associate editor of journals of the ASA as well as for other journals in statistics and computing. His interests include statistical computing, computational statistics, simulation, robust statistics, survey sampling, and computational finance.